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Abstract. The model of nonrelativistic particles coupled to nonstandard (2 + 1)-gravity is extended to
include Abelian or non-Abelian charges coupled to Chern–Simons gauge fields. Equivalently, the model
may be viewed as describing the (Abelian or non-Abelian) anyonic dynamics of Chern–Simons particles
coupled, in a reparameterization invariant way, to a translational Chern–Simons action. The quantum 2-
body problem is described by a nonstandard Schrödinger equation with a noninteger angular momentum
depending on energy as well as particle charges. Some numerical results describing the modification of the
energy levels by these charges in the confined regime are presented. The modification involves a shift as
well as splitting of the levels.

1 Introduction

Particles in 2+1 dimensions (D = 2+1) carrying electric
(Abelian) or isospin (non-Abelian) internal charges cou-
pled to Chern–Simons (CS) gauge fields have been consid-
ered in many applications (see e.g. [2,3]). These particles,
in the Abelian case describing anyons (see e.g. [4]) and for
non-Abelian couplings their generalizations (“non-Abelian
anyons”), are characterized, respectively, by the Abelian
and non-Abelian versions of braided fractional statistics
(see e.g. [5,6]).

The aim of this paper is to supplement the dynamics
of nonrelativistic CS particles with nonstandard gravita-
tional interactions described in [1]. The free field actions in
our model for the D = 2+1 gravitational and gauge fields
are described by the CS Lagrangians. In particular, in the
gravitational sector described by dreibeins Ea

µ (µ = 0, 1, 2;
a = 1, 2), with tangent space indices restricted to nonrela-
tivistic SO(2) space rotations, we use the following action
proposed in [1]:

SGR
0 =

1
2λ

∫
d3xεµνρEa

µT
a
νρ + SB, (1.1)

where T
a
µν = ∂µE

a
ν −∂νE

a
µ describes the D = 2+1 torsion

field and SB are boundary terms specified in [1,12]. The
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dreibeins transform covariantly under local space trans-
lations (fixed time diffeomorphisms). Then the invariant
free action for nonrelativistic point particles1 described by
trajectories xi

α(t) (i = 1, 2; α,= 1, . . . , N) is given, in the
first order formalism, by [1,12]

S
(N)
part,0 =

∫
dt

N∑
α=1

(
ξa
α

(
E

a
j,αẋ

j
α + E

a
0,α

)− 1
2
ξa
αξ

a
α

)
.

(1.2)
In the gauge sector we consider the known free CS

actions:

(i) Abelian case (Aµ is the electromagnetic potential)

SA
0 =

κ

4

∫
d3xεµνρAµFνρ

=
κ

2

∫
d3xεµνρAµ∂νAρ, (1.3)

where Fµν = ∂µAν − ∂νAµ.
(ii) Non-Abelian case (Ai

µ is the isospin gauge field po-
tential; for simplicity we shall choose the internal
symmetry group G = SU(2)) (cf. [8]):

SNA
0 =

κ

2

∫
d3xεµνρ

(
Ai

µ∂νA
i
ρ +

1
3
εijkA

i
µA

j
νA

k
ρ

)
.

(1.4)

1 For reasons of simplicity we give all particles the same mass
m = 1 in appropriate units
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In the Abelian case the “charge space” is trivial, de-
scribed by a constant numerical parameter. In the non-
Abelian case the internal degrees of freedom of CS par-
ticles should be explicitly taken into consideration by ex-
tending the space-time geometry (see e.g. [9,10]). The non-
Abelian charge space coordinates Qi(t) carrying the ad-
joint representation of the internal symmetry group G (in
our case i = 1, 2, 3 and Qi is the SO(3) isovector), af-
ter quantization (Qi → Q̂i), constitute the quantum me-
chanical analog of current algebra coordinates, with Lie
algebraic equal time commutation relations[

Q̂i(t), Q̂j(t)
]
= iεijkQ̂k(t). (1.5)

It is convenient to put the coordinates Qa on the sphere
S2 of radius J :

QiQi = J2, (1.6)

which describes an adjoint symplectic orbit of SU(2) with
the following Kirillov symplectic two form [9]:

Ω =
1

2J2 ε
ijkQidQjdQk. (1.7)

After quantization, the relation (1.6) defines the
Casimir of the SU(2) � SO(3) algebra (1.5) which im-
plies the quantization of the radius J by integers and
half-integers. Using Darboux variables one can derive from
(1.7) the free action for charge coordinates Qi (see Sect. 3).
We would like to recall here that the dynamics of free par-
ticles on the space-time ×S2 manifold was first derived in
the Kaluza–Klein framework [11] leading to Qi which sat-
isfy the Wong equations [10].

This paper can be regarded as the extension of our
results in [1,12], where we have considered the interac-
tion of D = 2 nonrelativistic particles and of the gravita-
tional field E

a
µ governed by the free action (1.1). In [12]

(see Sect. 8) we have considered also the interaction with
a constant D = 2 magnetic field. In this paper we con-
sider the additional dynamical Abelian and non-Abelian
CS gauge fields. Interestingly enough the coupling to dy-
namical gauge fields appears simpler than the interaction
with fixed external gauge potentials. This simplicity fol-
lows from the main property of the CS interactions in
D = 2 + 1, the local field–current identity, which permits
us to solve algebraically the fields in terms of the sources
(see e.g. [7,8]). In consequence, we obtain the solvability
of the D = 2 + 1 2-body problem with gravitational and
CS gauge interactions. It should be mentioned here that
an analogous problem for D = 1 + 1 [13,14] can be also
solved; however, the field–current identity loses its local
character (see [15]).

The plan of our paper is as follows.
In Sect. 2 we extend the model given in [1] by including

the coupling to the D = 2 + 1 CS electrodynamics (see
(1.3)) and present the classical dynamics.

In Sect. 3 we consider the extension of the notion of
point particles in space-time to non-Abelian CS particles
([8–11] with space-time points supplemented by internal
charge coordinates Qi, constrained by (1.6)). The non-
Abelian gauge sector is described by the CS action (1.4).

We find that, after quantization, the energy levels of the
2-body problem depend on the eigenvalues of the following
isospin-like operator

Ω̂

2
:= Q̂i

1Q̂
i
2 =

1
2

(
Ĵ2

12 − Ĵ2
1 − Ĵ2

2

)
, (1.8)

where Ĵ2
12 =

(
Q̂i

1 + Q̂i
2

)2
, Ĵ2

1 =
(
Q̂i

1

)2
, Ĵ2

2 =
(
Q̂i

2

)2
.

Thus, if the eigenvalues of the individual particles are
j1(j1+1) and j2(j2+1) respectively, the eigenvalues of Ĵ2

12
are given by j12(j12 + 1) where j12 lies between |j1 + j2|
and |j1 − j2|. In both cases, electric and isospin interac-
tions, in Sects. 2 and 3 we present the modification of the
classical results given in [1,12] which did not include the
gauge interactions. In Sect. 4 we describe 2-body quan-
tum mechanics and present numerical results for the cor-
responding modification of the energy spectra in the con-
fined regime for both the Abelian and the non-Abelian
case. Section 5 presents some outlook.

2 Classical dynamics
for the D = 2 Abelian case

We consider the following action of N nonrelativistic
charged particles interacting with dreibein fields Ea

µ and
an electromagnetic field Aµ:

S
(N)
part = S

(N)
part,0 +

∫
dt

N∑
α=1

eα

(
Aj,αẋ

j
α + A0,α

)
, (2.1)

where eα is the electric charge of the αth particle. Under
the assumption that the fields Aµ(x, t) transform covari-
antly under fixed time diffeomorphism S

(N)
part is an invariant

entity.
The full action is given now by

S(N) = SGR
0 + SA

0 + S
(N)
part. (2.2)

The equation of motion (EOM), the Gauss constraint for
the dreibeins Ea

µ derived from (2.2) and their solution are
described in [1,12]. We have

Ea
µ(x, t) = − λ

4π
∂µ

∑
α

ξa
αφ (x − xα) + Eas,a

µ , (2.3)

with

E
as,a
i = δa

i , (2.4)
E

as,a
0 = −va(t), (2.5)

where the singular gauge function φ is defined by

φ(x) := arctan
x2

x1
, (2.6)

and regularized in such a way that ∂kφ(x) vanishes for
x → 0.
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Variation of S with respect to va(t) leads to the con-
straint ∑

α

ξa
α = 0, (2.7)

and therefore to the vanishing of the total momentum of
the N -particle system [1,12].

The choice of gauge (2.4) and (2.5) for the dreibeins
breaks asymptotically the invariance with respect to local
space translations leaving, as residual symmetry [1,12],
only translations local in time, and rigid rotations.

The EOM and the Gauss constraint for the Aµ, and
their solutions, are all well known (cf. [7]). We have

Aµ(x, t) = − 1
2πκ

∂µ

∑
α

eαφ (x − xα) . (2.8)

Let us consider now the 2-body case, i.e. N = 2, in detail.
Applying the Legendre transformation to the

Lagrangian (2.2) and using the relevant constraints (Gauss
and (2.7)) we obtain for the 2-body Hamiltonian H de-
scribing relative motion

H = ξiξi, (2.9)

where we have defined

ξ :=
1
2

(ξ1 − ξ2) . (2.9a)

Denoting the canonical particle momenta by pα and
defining

p :=
1
2

(p1 − p2) (2.9b)

x := (x1 − x2) (2.9c)

we obtain from (1.2), (2.1), (2.3)–(2.5) and (2.8) and (2.9)
the relation

ξi = pi − λ

4π
∂iφ(x)

(
H − 2

λκ
e1e2

)
. (2.10)

Squaring it and using again (2.9) we obtain

H = p2 − l2

r2 +
l
2

r2 , (2.11)

where the angular momentum for the relative motion l
(l := x ∧ p) is, according to (2.10), given by

l = l +
λ

4π

(
H − 2

λκ
e1e2

)
, (2.12)

with
l := x ∧ ξ. (2.13)

Note that (2.11) has the same form in the case of ab-
sence of the Abelian gauge fields [1,12], only the relation
(2.12) gets an additional term.

By applying an inverse Legendre transformation to
(2.9) and using (2.10) we obtain the well known result
that the coupling to the Abelian gauge fields leads only to

the addition of a total time derivative to the two-particle
Lagrangian

L = L0 − e1e2

2πκ
d
dt

φ(x). (2.14)

Therefore the classical EOM are unchanged in comparison
with the e = 0 case [1,12]. Due to the singular nature of
dφ
dt this holds for noncoinciding particle positions, i.e. for
x �= 0 only.

In particular, we conclude from [1,12] that
(i)

ξ̇i = 0, (2.15)

(ii)

ẋi =
2ξi

1 +
λl

2πr2.

(2.16)

leading to l being a conserved quantity and to the geo-
metric bag formation in the case of λl < 0 for

r < r0 :=
(
λl

2π

)1/2

(2.17)

But, as shown in Sect. 4, the additional term in (2.12)
leads, in the quantum case, via (2.11) to a modification of
the energy levels in the confined regime.

3 Classical dynamics
for the D = 2 non-Abelian case

We now consider the interaction of N nonrelativistic parti-
cles carrying SU(2) charges Qa (a = 1, 2, 3) with dreibein
fields E

a
µ and SU(2) gauge fields Aa

µ. The corresponding

particle action S
(N)
part is given by

S
(N)
part = S

(N)
part,0 +

∫
dt

N∑
α=1

Qa
α

(
Aa

j,αẋ
j
α + Aa

0,α

)
+ S

(N)
SU(2),

(3.1)
where S(N)

SU(2) is the action which is given by the symplectic
form (1.7) [9]. Choosing on the sphere S2 the spherical
coordinates one gets

S
(N)
SU(2) :=

∫
dt

N∑
α=1

Jα cos θα(t)φ̇α(t), (3.2)

with θ, φ being the angles on the sphere S2.
The total action is now given by (see (1.1), (1.4) and

(3.1) and (3.2))

S(N) = S
(GR)
0 + S

(NA)
0 + S

(N)
part. (3.3)

Again, the gauge and gravitational degrees of freedom
are not coupled directly and, as in the Abelian case, the
dreibeins are described by (2.3)–(2.5).

The Euler–Lagrange equation for the SU(2) gauge
fields Aa

µ are given by [16]
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(i) the Gauss constraint

F a
ij(x, t) = − 1

κ
εij
∑
α

Qa
αδ(x − xa), (3.4)

and
(ii) the EOM

F a
i0(x, t) =

1
κ
εij
∑
α

Qa
αẋ

j
αδ(x − xa), (3.5)

where F a
µν is the SU(2) field strength

F a
µν := ∂µA

a
ν − ∂νA

a
µ + εabcA

b
µA

c
ν . (3.6)

Usually the nonlinear Gauss constraint (3.4) is solved
in the axial gauge Aa

1 ≡ 0, but then we would lose
the rotational covariance.

For the derivation of the effective 2-body dynamics
we need only the Aa

i (x, t) at the particle positions x1,2.
Fortunately, at these positions, the solution of (3.4) may
be obtained explicitly [16] in the following form:

Aa
i,1 = − 1

2πκ
Qa

2∂iφ (x1 − x2) , (3.7a)

Aa
i,2 =

1
2πκ

Qa
1∂iφ (x1 − x2) . (3.7b)

In order to make the arguments given in [16] rigorous we
introduce a gauge field Ãa

i ,

Ã a
i (x, t) := − 1

2πκ

2∑
α=1

Qa
α∂iφ (x − xα) , (3.7c)

solving the linearized Gauss constraint (3.4).
At the points x1,2 the potentials Ãa

i coincide with the
expressions given in (3.7a) and (3.7b), because the regular-
ization of ∂iφ leads to the vanishing of the self-interaction
terms in (3.7c). Furthermore, the nonlinear term in the
definition of F̃ a

ij (see (3.6)) vanishes at x1,2, which com-
pletes the proof.

The relation (3.5) will not be discussed further as Aa
0

is not needed in the following.
By the same procedure as described in Sect. 2 we may

now derive the expressions for the 2-body Hamiltonian
H and the canonical momentum for the relative particle
motion p. We obtain

H = ξiξi, (3.8)

and

ξi = pi − λ

4π
∂iφ(x)

(
H − 2

λκ
Qa

1Q
a
2

)
. (3.9)

Note that (3.8) and (3.9) are the same as (2.9) and (2.10)
respectively with the electric charges eα replaced by their
SU(2) counterparts.

Therefore, we obtain by squaring (3.9) again

H = p2 − l2

r2 +
l
2

r2 , (3.10)

with

l = l +
λ

4π

(
H − 2

λκ
Qa

1Q
a
2

)
, (3.11)

where l and l are defined as before.
Finally, we have to show that Qa

1Q
a
2 is a conserved

quantity, i.e.
d
dt

(Qa
1Q

a
2) = 0. (3.12)

In order to prove this statement we start with the non-
Abelian counterpart to (2.14) given by

L = L0 − Qa
1Q

a
2

2πκ
d
dt

φ(x) + LSU(2). (3.13)

Then the Euler–Lagrange equations for Qa
α are the Wong

equations [10,11] which take the form

Q̇a
1 − φ̇

2πκ
εabcQ

b
2Q

c
1 = 0. (3.14)

By exchanging the particle indices 1 and 2 we get

Q̇a
2 +

φ̇

2πκ
εabcQ

b
2Q

c
1 = 0. (3.15)

Note that (3.14) and (3.15) imply that the lengths of Qα

are conserved. Thus we conclude that

Q̇a
1 + Q̇a

2 = 0, (3.16)

which, due to (1.8), leads to the desired result (3.12). With
(3.12) we conclude from (3.13) that the formulae (2.15)–
(2.17) hold as in the non-Abelian case.

4 The quantum-mechanical 2-body problem
in a plane

Let us start with the observation that we have in the
Abelian and the non-Abelian case the same structure for
the classical 2-body Hamiltonian:

H = p2 − l2

r2 +
l
2

r2 , (4.1)

with

l = l +
λ

4π

(
H − Ω

λκ

)
, (4.2)

with Ω, a function of the particle charges, given by

Ω =

{
2e1e2, Abelian case,
2Qa

1Q
a
2 , non-Abelian case.

(4.3)

Without the gauge fields we have Ω = 0. Therefore, in
quantizing (4.1) and (4.2) we can follow the techniques
presented in [1,12]. However, we should keep in mind that
the quantum theory requires a quantized coupling κ in the
non-Abelian case [8,17]

4πκ ∈ Z. (4.4)
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Moreover, we have to properly take into account the quan-
tum nature of the operator Ω̂. We quantize the problem
by considering a Schrödinger-like equation

i�
∂ψ(x, t)

∂t
= Ĥψ(x, t) =

[
p̂2 − l2

r2 +
l
2

r2

]
Ψ(x, t), (4.5)

in which the operators Ĥ and p̂ are defined by the usual
quantization rules

Ĥ = i�
∂

∂t
, p̂i =

�

i
∂

∂xi
. (4.6)

Note that, in the non-Abelian case, the eigenvalues of
Ω̂ (see (1.8)) are determined by

Ω̂|j12, j1, j2〉 = Ω|j12, j1, j2〉
=

1
2

(j12(j12 + 1) − j1(j1 + 1)

−j2(j2 + 1)) |j12, j1, j2〉, (4.7)

so the wave function Ψ(x, t) depends also on the eigenval-
ues j1, j2 and j12. More explicitly, the wave function in
(4.5) for two non-Abelian CS particles with definite quan-
tized isospins j1 and j2 describes a multiplet of wave func-
tions with n components, where n = |j1+j2|−|j1−j2|+1.
This multiplet structure and the eigenvalues of Ω̂ given by
(4.7) will be implicitly assumed in all formulae that follow.

For the stationary case, i.e. when Ψ(x, t) = ΨE(x)
e(iEt/�) we can use the angular-momentum basis and put

ΨE,m = fE,m(r)eimϕ, (4.8)

where m is an integer, and find that fE,m satisfies a non-
standard time independent Schrödinger equation[

−�
2
(
∂2

r +
1
r
∂r − m̄2

r2

)
− E

]
fE,m(r) = 0, (4.9)

where, in consistency with (4.2), we have defined

�m̄ := �m − λ

4π

(
E − Ω

λκ

)
(4.10)

i.e. �m̄ is an eigenvalue of l and Ω denotes the eigenvalue
of Ω̂.

We see that our equation (4.9) is the same as (7.6) of
[12] with an important difference due to Ω. The existence
of Ω leads not only to the redefinition of m̄ but, in the non-
Abelian case, also to the splitting of the energy levels as
for any integer or half-integer values of j1 and j2 there are
several values of j12 which satisfy j12 ∈ (|j1−j2|, |j1+j2|).
To determine the energy levels, we can, however, follow the
procedure used in [12]. Thus, in particular, if we focus our
attention on the interior solutions (r < r0) we find that
they are given by

fE,m(r) = Jm

(√
E

�
r

)
(4.11)

(restricting our attention to the more interesting case of
λl̄ < 0).

The energy levels are then given by the eigenvalues
of H, which are determined by the boundary condition
corresponding to the requirement that the wave function
vanishes at r = r0, and are given by

Jm̄

[√
E

�

(
�|λm̄|
2π

)1/2
]

= 0 (4.12)

with m̄ given by (4.10).
Let us look at the case m̄ > 0, λ < 0. Then it is

convenient to define

ε =
|λ|E
2π�

, (4.13)

so that (4.12) takes the form

Jm̄

(
m̄1/2ε1/2

)
= 0. (4.14)

The Bessel function Jm̄, for fixed m̄ > 0, has an infinite
number of positive zeros which, in what follows, we denote
by yn(m̄), n = 1, 2, . . . Thus we see that due to (4.10),
the eigenvalues εn(m) are the positive fixed points of the
equation

ε = fn(m̄) = fn

(
m +

1
2
ε +

Ω

4π�κ

)
, (4.15)

where
fn(m̄) =

1
m̄

y2
n(m̄). (4.16)

The existence of positive fixed points ε of (4.15) was
discussed in great detail in [12], both by using various
asymptotic formulae for the zeros of the Bessel functions
and also by solving (4.15) numerically. As the present case
differs from the case without the gauge functions by the
redefinition of m̄, below we present the figure from [12],
but this time with the interpretation that the horizontal
axis denotes not m but (m + (Ω/(4π�λκ))).

The plot looks like several curves; the lowest values
correspond to the first zeros (i.e., n = 1), the next ones
to second zeros i.e. n = 2 etc. The points lie so close that
the figure may appear as a set of lines while, in reality, we
have here sets of points. The points appear to be (almost)
equally spaced on each “curve” – this is due to the ap-
proximate linearity of the positions of zeros of the Bessel
functions as a function of m̄. To check our values for the
energies we have also solved (4.15) differently; we approx-
imated the positions of the zeros of the Bessel functions
by a linear function and solved the resultant equations for
ε. The obtained results were very similar to those of our
figure, thus giving us confidence in our results.

Our results show that, for each value of m and so for
each value of m̃ = (m + (Ω/(4π�λκ))), there is a whole
tower of values of ε corresponding to different zeros of
the Bessel functions. In addition, in the non-Abelian case,
there is a further splitting of energy levels due to the dif-
ferent values of j12 in Ω. The values of ε increase, approx-
imately linearly, as we take higher zeros (i.e. yn for larger
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n). The dependence on m is only slightly more compli-
cated; for each order of the zero there is a value of m for
which the energy is minimal and as we move away from
this value the energy grows, approximately, linearly. As n
increases the minimal values of m increase, again, approx-
imately linearly.

Note that for m̄ < 0 and λ > 0 the corresponding
energy levels are obtained by changing the sign of m and
Ω.

We summarize our results by noting that in the interior
region r < r0, where classical solutions are only possible
for a finite time interval, we can find quantum solutions
which correspond to discrete bound states determined by
the boundary condition at r = r0. This shows that as in
the case discussed in [12] this boundary condition defines
a sort of planar geometric “bag” for the quantum state.

The discussion of the exterior solutions is again similar
to what we presented in [12]. The system has no bound
states and the scattering solutions are given by a super-
position of Bessel functions of the first and second kind:

fE,m(r) = Am(E)Jm̄

(√
E

�
r

)

+Bm(E)Ym̄

(√
E

�
r

)
(4.17)

with the ratio Am/Bm determined by the boundary condi-
tion of the wave function vanishing at r = r0. Clearly the
solutions describe scattering on an obstruction of radius
r0, which is dynamically determined.

5 Final remarks

In D = 2+1 dimensions one can consider four basic actions
describing gravitational and gauge degrees of freedom2.

(1) The Einstein action, linear in Riemann curvature with
Maxwell or Yang–Mills gauge fields;

(2) the Einstein action with (Abelian or non-Abelian)
Chern–Simons gauge fields;

(3) the translational Chern–Simons gravity action with
Maxwell or Yang–Mills gauge fields;

(4) translational Chern–Simons gravity with Chern–
Simons gauge fields.

In this paper we have studied the last case in this list
and considered the coupling to D = 2 + 1 nonrelativistic
particles. We have shown that in the interacting D = 2+1
Chern–Simons theories, with sources, the field equations
take the form of field–current identities. This has allowed
us to eliminate the field degrees of freedom and to obtain,

2 One can consider also models with linear combinations of
Maxwell and Chern–Simons terms in the gauge sector as well as
both the Einstein and translational Chern–Simons terms in the
gravity sector (cf. [17]). The (2 + 1)-dimensional gravity with
the Einstein term supplemented by the translational Chern–
Simons term was named “vector Chern–Simons gravity” in [18]
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Fig. 1. Energy as a function of m̃ = (m+ (Ω/(4π�λκ)))

without any approximation, the planar 2-body interac-
tion.

In the non-Abelian case, following [11], we have con-
sidered the motion of particles in a 2-dimensional space
extended by internal coordinates, in accordance with the
Kaluza–Klein approach to internal symmetries.

Our basic result is a quantum mechanical solution of
the 2-body problem, describing dynamically confined par-
ticles, with the energy-dependent potential generated by
the double (gravitational and gauge) Chern–Simons cou-
plings. In our previous papers [1,12] we showed that the
(single) gravitational Chern–Simons coupling in D = 2
dimensions

(1) leads to planar confinement, and
(2) implies the noninteger values of the quantum number

m̄0:

m̄0 = m − λE

4π�
, (5.1)

describing the continuous values of the Abelian spin in
D = 2+1 dimensions. We see from (5.1) that the grav-
itational Chern–Simons coupling leads to the anyonic
behavior of massive point particles3.

The effect of adding the Chern–Simons gauge interac-
tion in both the Abelian and non-Abelian cases reduces to
the additional shift of the continuous Abelian spin value

m̄0 → m̄ = m̄0 +
Ω

4πκ�
. (5.2)

Thus we see that in the Abelian case we have anyonic
values of the angular momentum, shifted by a term pro-
portional to the product of Abelian gauge charges. In the
non-Abelian case the shift is given by the eigenvalues of
the operator Ω̂/2 (1.8), described explicitly by (4.7), i.e. it
is matrix valued. We see from our results that the planar

3 Such an observation was made earlier in [19]
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confinement remains valid as in the purely gravitational
case. In the non-Abelian case we have a new effect – the
splitting of energy levels.
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